Objectives:In this study, we investigated the effect of metamizole on ischemia/reperfusion (I/R) injury an analysis of biochemistry, molecular gene expression, and histopathology in the rat ovary of female albino Wistar rats.Materials and Methods:Animals were divided into four groups; control group with induced ischemia-reperfusion (IRC), ischemia-reperfusion +100 mg/kg metamizole sodium (MS) (IRM-100), ischemia-reperfusion +200 mg/kg MS (IRM-200), and healthy group applied sham operation (SG).Results:Myeloperoxidase (MPO) activity and gene expression increased significantly in IRC and IRM-100 group rat ovarian tissue compared with the SG group (P < 0.0001). However, MPO activity and gene expression in IRM-200 group ovarian tissue decreased significantly compared with the IRC and IRM-100 groups (P < 0.0001). Histopathologically, pronounced congestion, dilated vessels, hemorrhage, edema, degenerative cells, and neutrophil migration and adhesion to the endothelium were observed in the IRC and IRM-100 group ovarian tissues. A small number of congested dilated vessels, mild congestion, and edema were observed in the IRM-200 group, but no neutrophil migration and adhesion to the endothelium or degenerative cells.Conclusions:At 200 mg/kg dose metamizole prevented ovarian injury induced with I/R. This data show that metamizole can be used in the ovarian I/R injury treatment.