Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper comprises two studies; the first one provides an advanced and low-cost implementation for a remote astronomical platform applicable for small and medium-sized telescopes. It has been carried out for the 14-inch observatory, which includes a Celestron German Equatorial (CGE) telescope at the Kottamia astronomical observatory (KAO) in Egypt. This integrated control system is based on embedded systems, internet of things (IoT) technology, row packets communication procedure, and the Transmission Control Protocol (TCP) based on the Internet Protocol (IP). Using this platform, remote astronomers could control the whole system, observe, receive images and view them efficiently and safely without any human physical intervention. The proposed design has been achieved without dependence on commercial control kits or software. Indeed, many previous studies have focused on this field; however, their area of interest was limited or non-affordable. The excellence in this practical research is revealed and compared with others in terms of cost, inclusiveness, and communication speed. The other contribution of this research is to enhance the performance of the telescope pointing and tracking to be adapted with remote action. It has been achieved based on the mathematical model of the telescope where two fractional controllers have been applied, tilt integral-derivative (TID) and integral derivative-tilted (ID-T) controllers. After that, they have been optimized using a recent optimization algorithm called peafowl optimization algorithm (POA) and compared with one of the well-known algorithms; particle swarm optimization (PSO). Simulation results under the MATLAB/SIMULINK environment reveal that modified ID-T-based POA has minimized the pointing error sharply. Moreover, compared with previous studies, it has significantly improved the telescope system characteristics represented in the times of overshoot, settling, and rising.INDEX TERMS Remote telescope, integral derivative-tilted controller, peafowl optimization algorithm.
This paper comprises two studies; the first one provides an advanced and low-cost implementation for a remote astronomical platform applicable for small and medium-sized telescopes. It has been carried out for the 14-inch observatory, which includes a Celestron German Equatorial (CGE) telescope at the Kottamia astronomical observatory (KAO) in Egypt. This integrated control system is based on embedded systems, internet of things (IoT) technology, row packets communication procedure, and the Transmission Control Protocol (TCP) based on the Internet Protocol (IP). Using this platform, remote astronomers could control the whole system, observe, receive images and view them efficiently and safely without any human physical intervention. The proposed design has been achieved without dependence on commercial control kits or software. Indeed, many previous studies have focused on this field; however, their area of interest was limited or non-affordable. The excellence in this practical research is revealed and compared with others in terms of cost, inclusiveness, and communication speed. The other contribution of this research is to enhance the performance of the telescope pointing and tracking to be adapted with remote action. It has been achieved based on the mathematical model of the telescope where two fractional controllers have been applied, tilt integral-derivative (TID) and integral derivative-tilted (ID-T) controllers. After that, they have been optimized using a recent optimization algorithm called peafowl optimization algorithm (POA) and compared with one of the well-known algorithms; particle swarm optimization (PSO). Simulation results under the MATLAB/SIMULINK environment reveal that modified ID-T-based POA has minimized the pointing error sharply. Moreover, compared with previous studies, it has significantly improved the telescope system characteristics represented in the times of overshoot, settling, and rising.INDEX TERMS Remote telescope, integral derivative-tilted controller, peafowl optimization algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.