Pine wood sourced from pellet packaging, being abundant, holds potential for utilization in creating bio composites, particularly as activated carbon for laminated coatings in structural applications. However, there is a current lack of research identifying its specific properties as a coating material for Fiber Reinforced Polymer (FRP) composites. Fiber Reinforced Polymer (FRP) composites provide a highly adaptable solution for reinforcing and revitalizing existing structures in challenging marine conditions. This study delves into investigating the flexural characteristics of FRP pine wood composites, comparing the findings with Finite Element Analysis (FEA) results. Furthermore, the activated carbon derived from pine wood exhibits potential for resisting barnacle attachment when immersed in saltwater. For the flexural analysis, samples were produced using a silicone rubber mold, incorporating varying weight percentages (wt.%) of activated FRP pine wood, ranging from 2 wt.% to 10 wt.%. The outcomes of the study reveal that the introduction of activated carbon from pine wood leads to an enhancement in ultimate strength, reaching a maximum of 2700 MPa. Nonetheless, the results also indicate a reduction in material strength as the proportion of activated carbon pine wood is increased.