The sound-transmission, beam-formation, and sound-reception processes of a short-finned pilot whale (Globicephala macrorhynchus) were investigated using computed tomography (CT) scanning and numerical simulation. The results showed that sound propagations in the forehead were modulated by the upper jaw, air components, and soft tissues, which attributed to the beam formation in the external acoustic field. These structures owned different acoustic impedance and formed a multiphasic sound transmission system that can modulate sounds into a beam. The reception pathways composed of the solid mandible and acoustic fats in the lower head conducted sounds into the tympano-periotic complex. In the simulations, sounds were emitted in the forehead transmission system and propagated into water to interrogate a steel cylinder. The resulting echoes can be interpreted from multiple perspectives, including amplitude, waveform, and spectrum, to obtain the acoustic cues of the steel cylinder. By taking the shortfinned pilot whale as an example, this study provides meaningful information to further deepen our understanding of biosonar system operations, and may expand sound-reception theory in odontocetes.