For many application areas such as autonomous navigation, the ability to accurately perceive the environment is essential. For this purpose, a wide variety of well-researched sensor systems are available that can be used to detect obstacles or navigation targets. Stereo cameras have emerged as a very versatile sensing technology in this regard due to their low hardware cost and high fidelity. Consequently, much work has been done to integrate them into mobile robots. However, the existing literature focuses on presenting the concepts and algorithms used to implement the desired robot functions on top of a given camera setup. As a result, the rationale and impact of choosing this camera setup are usually neither discussed nor described. Thus, when designing the stereo camera system for a mobile robot, there is not much general guidance beyond isolated setups that worked for a specific robot. To close the gap, this paper studies the impact of the physical setup of a stereo camera system in indoor environments. To do this, we present the results of an experimental analysis in which we use a given software setup to estimate the distance to an object while systematically changing the camera setup. Thereby, we vary the three main parameters of the physical camera setup, namely the angle and distance between the cameras as well as the field of view and a rather soft parameter, the resolution. Based on the results, we derive several guidelines on how to choose the parameters for an application.