Urea regulators (UR) have generally been employed against diesel trucks to save urea usage and thus contribute to the reduction in excessive emissions, while their usage is generally difficult to supervise and enforce. By conducting real driving emission measurements on a China IV heavy-duty diesel truck, a “trade-off” effect caused by UR was found between nitrogen oxides (NOx) and particle number (PN) emissions. The usage of UR contributes to 1.04 times higher NOx but 0.28 times lower PN emissions for the whole trip. In particular, the increasing effects on NOx are most efficient on the highway and least effectual on the urban road, while the decreasing effects on PN exhibit an opposite trend under different road types. From low- and medium- to the high-speed bin, the peak average vehicle-specific power NOx emission rates exhibit markedly increasing but slightly decreasing trends for the truck with and without UR, respectively. Furthermore, the NOx emissions in units of CO2 and the linear correlational relationship between CO2 and NOx instantaneous mass emission rates, especially those on the highway, are significantly enhanced. This study directly clarifies the effects of UR on real-world emissions, providing a scientific basis for the real-time identification of the malfunction of the selective catalytic reduction system.