The sources of terrestrial material delivered to the California margin over the past 7 Myr were assessed using 187Os/188Os, Nd, and Pb isotopes in hydrogenetic ferromanganese crusts from three seamounts along the central and southern California margin. From 6.8 to 4.5 (±0.5) Ma, all three isotope systems show more radiogenic values at Davidson Seamount, located near the base of the Monterey Canyon System, than in Fe‐Mn crusts from the more remote Taney and Hoss Seamounts. At the Taney Seamounts, approximately 225 km farther offshore from Davidson Seamount, 187Os/188Os values, but not Pb and Nd isotope ratios, also deviate from the Cenozoic seawater curve toward more radiogenic values from 6.8 to 4.5 (±0.5) Ma. However, none of the isotope systems in Fe‐Mn crusts deviate from seawater at Hoss Seamount located approximately 450 km to the south. The regional gradients in isotope ratios indicate that substantial input of dissolved and particulate terrestrial material into the Monterey Canyon System is responsible for the local deviations in the seawater Nd, Pb, and Os isotope compositions from 6.8 to 4.5 (±0.5) Ma. The isotope ratios recorded in Fe‐Mn crusts are consistent with a southern Sierra Nevada or western Basin and Range provenance of the terrestrial material which was delivered by rivers to the canyon. The exhumation of the modern Monterey Canyon must have begun between 10 and 6.8 ± 0.5 Ma, as indicated by our data, the age of incised strata, and paleo‐location of the Monterey Canyon relative to the paleo‐coastline.