Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Volatile organic compounds (VOCs) in gas mixtures at trace level (nmol/mol) are routinely measured by chemical and biochemical laboratories as climate indicators, indoor air quality pollutants from building materials emissions, contaminants in food and beverages, and biomarkers in body fluids (blood, urine, breath) of occupational exposure or human diseases. Current analytical instruments used for measurements are gas chromatographs equipped with various injector and detector configurations. The assurance of measurement quality is done by using a huge amount of certified liquid VOC standard solutions (or gaseous VOC standard cylinders) with multiple dilutions to reach the required trace level. This causes high standard uncertainty in instrument calibrations, high cost, and high consumption of analysis and laboratory personal time. In this paper, we present the implementation of portable generators producing VOC gas standards at trace level for automatic and direct calibration of VOC detectors employed in various contexts, removing the need for preparation of matrix calibration standards in cylinders. Two compact devices in-house developed by two national metrology institutes-the Istituto Nazionale di Ricerca Metrologica (INRIM) and the Federal Institute of Metrology (METAS)-are here used to dynamically generate reference gas mixtures in an SI traceable way. The two devices are based on different technologies: diffusion and permeation, for INRIM and METAS, respectively. A metrological characterization is given and the practical implementation at chemical and biochemical laboratories is discussed. Graphical abstract Onsite calibration with transportable generation system with similar performances to primary laboratory devices.
Volatile organic compounds (VOCs) in gas mixtures at trace level (nmol/mol) are routinely measured by chemical and biochemical laboratories as climate indicators, indoor air quality pollutants from building materials emissions, contaminants in food and beverages, and biomarkers in body fluids (blood, urine, breath) of occupational exposure or human diseases. Current analytical instruments used for measurements are gas chromatographs equipped with various injector and detector configurations. The assurance of measurement quality is done by using a huge amount of certified liquid VOC standard solutions (or gaseous VOC standard cylinders) with multiple dilutions to reach the required trace level. This causes high standard uncertainty in instrument calibrations, high cost, and high consumption of analysis and laboratory personal time. In this paper, we present the implementation of portable generators producing VOC gas standards at trace level for automatic and direct calibration of VOC detectors employed in various contexts, removing the need for preparation of matrix calibration standards in cylinders. Two compact devices in-house developed by two national metrology institutes-the Istituto Nazionale di Ricerca Metrologica (INRIM) and the Federal Institute of Metrology (METAS)-are here used to dynamically generate reference gas mixtures in an SI traceable way. The two devices are based on different technologies: diffusion and permeation, for INRIM and METAS, respectively. A metrological characterization is given and the practical implementation at chemical and biochemical laboratories is discussed. Graphical abstract Onsite calibration with transportable generation system with similar performances to primary laboratory devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.