In this paper, we present new data on non-stationary heating of a platinum wire probe, immersed in a binary partially-miscible liquid. A pressure value and a mass fraction of the a polymer in the mixture were the experimental parameters. The characteristic heating time was from 5 to 15 ms. The object of the research was the water/polypropylene glycol-425 (PPG-425) mixture having lower critical solution temperature (LCST). The position of the diffusion spinodal was estimated based on the obtained data on the liquid-liquid binodal in the framework of the Flory-Huggins approximation. An experimental technique to estimate the position of the spinodal of two-component mixtures with LCST on the scale of the mixture component ratio was developed. It was shown that the method of isobaric pulse heating can be used for this purpose. This representation is based on the threshold change in the heat transfer pattern when crossing the phase coexistence curve and the diffusion spinodal.