IntroductionThe initial stability and survival rate of orthodontic mini-implants are highly dependent on the amount of cortical bone at their insertion site. In areas with limited bone availability, mini-plates are preferred to provide effective skeletal anchorage. The purpose of this paper was to present a new clinical technique for the insertion of mini-plates.MethodsIn order to apply this new technique, a cone-beam image of the insertion area is required. A software (Galaxy Sirona, Bensheim, Germany) is used to construct a three-dimensional image of the scanned area and to virtually determine the exact location of the mini-plate as well as the position of the fixation screws. A stereolithographic model (STL) is then created by means of a three-dimensional scanner.Prior to its surgical insertion, the bone plate is adapted to the stereo-lithographic model. Finally, a custom transfer jig is fabricated in order to assist with accurate placement of the mini-plate intra-operatively.ResultsThe presented technique minimizes intra-operative decision making, because the final position of the bone plate is determined pre-surgically. This significantly reduces the duration of the surgical procedure and improves its outcome.ConclusionsA novel method for surgical placement of orthodontic mini-plates is presented. The technique facilitates accurate adaptation of mini-plates and insertion of retaining surgical screws; thereby enabling clinicians to more confidently increase the use of bone plates, especially in anatomical areas where the success of non-osseointegrated mini-screws is less favorable.