Currently, wearable sensors can measure vital sign frequencies, such as respiration rate, but they fall short of providing quantitative data, such as respiratory tidal volume. Meanwhile, the airflow at the mouth carries both the frequency and quantitative respiratory signals. In this study, we propose a method to calibrate a wearable piezoelectric thread sensor placed on the chest using mouth airflow for accurate quantitative respiration monitoring. Prior to human trials, we introduced an artificial ventilator as a test subject. To validate the proposed concept, we embedded a miniaturized tube airflow sensor at the ventilator’s outlet, which simulates human respiration, and attached a wearable piezoelectric thread to the piston, which moves periodically to mimic human chest movement. The integrated output readings from the wearable sensor aligned with the airflow rate measurements, demonstrating its ability to accurately monitor not only respiration rate but also quantitative metrics such as respiratory volume. Finally, tidal volume measurement was demonstrated using the wearable piezoelectric thread.