In this study, a packed bed reactor is developed to investigate the gasification process of coal particles. The effects of coal particle size and heater temperature of reactor are examined to identify the thermochemical processes through the packed bed. Three different coal samples with varying size, named as A, B, and C, are used, and the experimental results show that the coal packed bed with smaller size has higher temperature, reaching 624oC, 582oC, and 569oC for coal A, B, and C respectively. In the case of CO formation, the smaller particle size has greater products in the unit of mole fraction over the area of generation. However, the variation in the porosity of the coal packed bed due to different particle sizes affects the reactions through the oxygen access. Consequently, the CO formation is least from the coal packed bed formed by the smallest particle size A. A second test with the temperature variations shows that the higher heater temperature promotes the chemical reactions, resulting in the increased gas products. The findings indicate the important role of coal seam porosity in UCG (underground coal gasification) application, as well as temperature to promote the syngas productions.