In this chapter we demonstrate the large usefulness of using complex approach for understanding the mechanism of binding of biologically active compounds (antitumour antibiotics, mutagens etc.) with nucleic acids (NA). The applications of various biophysical methods and computer modeling to determination of structural (Infra-red and Raman vibrational spectroscopies, computer modeling by means of Monte-Carlo, molecular docking and molecular dynamics methods) and thermodynamic (UV-VIS spectrophotometry, microcalorimetry, molecular dynamics simulation) parameters of NA-ligand complexation with estimation of the role of water environment in this process, are discussed. The strategy of energy analysis of the NA-ligand binding reactions in solution is described, which is based on decomposition of experimentally measured net Gibbs free energy of binding in terms of separate energetic contributions from particular physical factors. The main outcome of such analysis is to answer the questions "What physical factors and to what extent stabilize/destabilize NA-ligand complexes?" and "What physical factors most strongly affect the bioreceptor binding affinity?"