The present study analyzes the behavior of connections with flange-web welded plates using the finite element method in tubular columns filled with concrete, and beam, type I. An analytical study of the structural dynamic behavior of a Special Moment Frame (SMF) was carried out, in 5 levels, with HEB structural profiles, for IPE-type columns and beams, according to the requirements established by the AISC-360-16, ANSI-341 standards, and the Ecuadorian standard NEC-2015. The design process of the special frame structure was validated with the help of specialized software. Subsequently, the structural profiles were replaced following the actual construction situation in Ecuador. 3D models of the structural system and the elements of metallic connections were obtained for evaluation through the analysis of finite elements. These models were subjected to virtual tests according to the AISC 341-16 protocols and FEMA 350 standards. The evaluation of the connections showed that they did not meet the flexural strength criterion at 0.04 rad, but they exceeded 80% of the plastic moment at 0.02 rad. Thus, flange-web welded plate connections can be valid for intermediate moment frames (IMF) in areas with moderate seismicity. In addition, it was observed that the columns filled with concrete optimize the structural elements in terms of dimensions; but do not contribute significantly to soldered connections due to the later development of plastic ball joints.