Recent advances in mass spectrometry have facilitated chemical characterization and profiling of complex environmental mixtures such as oil sand process-affected water (OSPW) and identification of previously unresolved chemicals. However, because OSPW is a complex mixture of salts, metals, suspended particulate matter, and dissolved organics, extraction techniques are required to reduce the effects of signal suppression/enhancement. In this work, Orbitrap, ultrahigh resolution mass spectrometry was used to perform a comprehensive comparison of solid phase extraction (SPE) and liquid−liquid extraction (LLE) techniques on profiling of dissolved organic chemicals in OSPW. When operated in negative ion mode, extraction of naphthenic acid (NAs−O 2 ) was dependent on acidification of OSPW samples for C 18 and LLE techniques. However, when applying a hydrophilic lipophilic balance (HLB) sorbent (ABN) SPE technique, the extractability of NAs was independent of pH. When operated in positive ion mode, for all extraction methods, nitrogen-and sulfur-containing species were more abundant and diverse in basic extracts than in acidic extracts and ABN extracted the greatest number of chemical species including nitrogen-, sulfur-, and oxygen-containing species. Overall, this study supports the utility of HLB SPE techniques for profiling of species of dissolved organic chemicals in OSPW at environmentally relevant pH.