Several haloperidol derivatives with a piperidine scaffold that was decorated at the nitrogen atom with different alkyl, benzyl, or substituted benzyl moieties were synthesized at our laboratory to establish a library of compounds with vasodilator activity. Compounds were screened for vasodilatory activity on isolated thoracic aorta rings from rats, and their quantitative structure–activity relationships (QSAR) were examined. Based on the result of QSAR, N-4-tert-butyl benzyl haloperidol chloride (16c) was synthesized and showed the most potent vasodilatory activity of all designed compounds. 16c dose-dependently inhibited the contraction caused by the influx of extracellular Ca2+ in isolated thoracic aorta rings from rats. It concentration-dependently attenuated the calcium channel current and extracellular Ca2+ influx, without affecting the intracellular Ca2+ mobilization, in vascular smooth muscle cells from rats. 16c, possessing the N-4-tert-butyl benzyl piperidine structure, as a novel calcium antagonist, may be effective as a calcium channel blocker in cardiovascular disease.