In this paper, the optimization of the flow channel structure of the U-shaped air distributor is proposed. Fluent meshing was used to mesh the multipatch meshing of the original model of the grid air distributor, and then the CFD numerical simulation was carried out by using Fluent 2022R1 to obtain the internal air flow state of the air distributor flow channel. Through the orthogonal experimental design and a comprehensive analysis method, the optimal size structure for resistance performance is obtained as S = 60 mm, RL = 125 mm, L = 160 mm, D = 100 mm, the resistance coefficient of the new structure as 1.375, and the pressure loss as 56.87 Pa, by using 3D modeling software (SOLIDWORKS 2015) and Fluent. Compared with the initial scheme, the resistance coefficient and pressure loss are reduced by 3.03% and 6.29%, respectively. To summarize, the research in this paper offers a substantial contribution to the realm of energy conservation and emission abatement in ship air conditioning systems, simultaneously furnishing invaluable guidance for the design of air distributors.