The 8th International Scientific Conference "Business and Management 2014" 2014
DOI: 10.3846/bm.2014.040
|View full text |Cite
|
Sign up to set email alerts
|

Investigation Of Exchange Market Prediction Model Based On High-Low Daily Data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
2

Year Published

2017
2017
2021
2021

Publication Types

Select...
3
1

Relationship

2
2

Authors

Journals

citations
Cited by 4 publications
(5 citation statements)
references
References 25 publications
0
3
0
2
Order By: Relevance
“…Schmidhuber et al (2005) proposed the forecasting tool 'Evolution of recurrent systems with Optimal Linear Output' (EVOLINO), which was adopted to predict exchange rates. Maknickienė and Maknickas (2016) and Stankevičienė et al (2014) investigated the support system for investors in the exchange market (Maknickas and Maknickienė, 2019). With the emergence of a new class of artificial intelligence algorithms, a predictive RNN implementation using the deep learning library Keras interfaced (Chollet et al, 2015) with the TensorFlow (Abadi et al, 2015) neural network framework was proposed.…”
Section: Figure 1 Long Short-term Memory (Lstm)mentioning
confidence: 99%
“…Schmidhuber et al (2005) proposed the forecasting tool 'Evolution of recurrent systems with Optimal Linear Output' (EVOLINO), which was adopted to predict exchange rates. Maknickienė and Maknickas (2016) and Stankevičienė et al (2014) investigated the support system for investors in the exchange market (Maknickas and Maknickienė, 2019). With the emergence of a new class of artificial intelligence algorithms, a predictive RNN implementation using the deep learning library Keras interfaced (Chollet et al, 2015) with the TensorFlow (Abadi et al, 2015) neural network framework was proposed.…”
Section: Figure 1 Long Short-term Memory (Lstm)mentioning
confidence: 99%
“…Forecasting by the Keras recurrent neural network uses the high-low distribution method (Stankevičienė, Maknickienė, & Maknickas, 2014). According to the obtained Keras recurrent neural network exchange rate forecasts, four currency trading strategies that have four different two-dimension (profitability-risk) portfolios were constructed.…”
Section: Strategies Of Asset Allocationmentioning
confidence: 99%
“…Finansų srityje plačiai naudojami iš laiko eilučių teorijos susiformavę modeliai, tokie kaip ARIMA, ARCH, GARCH, ir kt. (Vejendla, Enke 2013 (Stankevičienė et al 2014). Dauguma autorių siekia sukurti savo modelius, pritaikomus kuo daugiau skirtingų akcijų, nes ne visada modelis, tinkamas vienai akcijai, gali tikti kitai akcijai ar kitokiam turtui.…”
Section: Prielaidos Investavimo Sprendimų Priėmimo Modeliams Kurtiunclassified
“…Taigi dirbtinis neu ronų tinklas gali būti taikomas akcijų rinkai prognozuoti (Maknickienė, Maknickas 2013a). Toks dirbtiniu intelektu pagrįstų modelių kūrimas sudaro galimybes mokslininkams pritaikyti jau žinomas investavimo strategijas ir tobulinti naujas (Stankevičienė et al 2014). Dauguma autorių siekia sukurti savo modelius, pritaikomus kuo daugiau skirtingų akcijų, nes ne visada modelis, tinkamas vienai akcijai, gali tikti kitai akcijai ar kitokiam turtui.…”
Section: Prielaidos Investavimo Sprendimų Priėmimo Modeliams Kurtiunclassified