Two methods for increasing the geometric fidelity of a fan-stage, broadband, interaction-noise model are investigated. The increase in fidelity is sought in order to eliminate the dependence on stagger selection that exists when vanes are modeled as flat plates. First, a blade-vortex interaction (BVI) technique is considered for obtaining a subsonic, 2D, unsteady, real-geometry cascade response that can be readily incorporated into an existing low-order broadband model. A description of the overall method and results from the development of the cascade-BVI are presented. Second, a method for utilizing a linearized Euler calculation that has been presented in the literature previously is reviewed and discussed. Preliminary findings from an attempt to utilize LINFLUX as the linearized Euler solver in the broadband model are described.