Wear usually occurs in the loaded part of hydrodynamic bearings and leads the bearing geometry imperfections. This paper investigates the effects of wear-induced geometric imperfections of tilting pad journal bearings (TPJBs) on the dynamic behavior of the system. Furthermore, the effect of wear on the journal-bearing rub-induced contact pressure severity is investigated. A novel tribo-dynamic model is proposed for a flexible rotor-worn TPJB which integrates a mixed elastohydrodynamic model with a rotor-worn TPJB thermal and dynamic model to assess the effects of the bearing wear progression on the rotor-TPJB behavior. Based on the results, wear changes the temperature distribution of the pads and oil film as well as the dynamic behavior of the system. Dynamic simulations reveal a higher vibration level and contact pressure for the worn TPJBs near the system's critical speed and service speed. Finally, thermal and dynamic condition indicators are suggested to detect TPJB wear severity at its early stages.