Purpose
The purpose of this study is to propose a fast method for predicting flow fields with periodic behavior with verification in the context of a radial turbine to meet the urgent requirement to effectively capture the unsteady flow characteristics in turbomachinery. Aiming at meeting the urgent requirement to effectively capture the unsteady flow characteristics in turbomachinery, a fast method for predicting flow fields with periodic behavior is proposed here, with verification in the context of a radial turbine (RT).
Design/methodology/approach
Sparsity-promoting dynamic mode decomposition is used to determine the dominant coherent structures of the unsteady flow for mode selection, and for flow-field prediction, the characteristic parameters including amplitude and frequency are predicted using one-dimensional Gaussian fitting with flow rate and two-dimensional triangulation-based cubic interpolation with both flow rate and rotation speed. The flow field can be rebuilt using the predicted characteristic parameters and the chosen model.
Findings
Under single flow-rate variation conditions, the turbine flow field can be recovered using the first seven modes and fitted amplitude modulus and frequency with less than 5% error in the pressure field and less than 9.7% error in the velocity field. For the operating conditions with concurrent flow-rate and rotation-speed fluctuations, the relative error in the anticipated pressure field is likewise within an acceptable range. Compared to traditional numerical simulations, the method requires a lot less time while maintaining the accuracy of the prediction.
Research limitations/implications
It would be challenging and interesting work to extend the current method to nonlinear problems.
Practical implications
The method presented herein provides an effective solution for the fast prediction of unsteady flow fields in the design of turbomachinery.
Originality/value
A flow prediction method based on sparsity-promoting dynamic mode decomposition was proposed and applied into a RT to predict the flow field under various operating conditions (both rotation speed and flow rate change) with reasonable prediction accuracy. Compared with numerical calculations or experiments, the proposed method can greatly reduce time and resource consumption for flow field visualization at design stage. Most of the physics information of the unsteady flow was maintained by reconstructing the flow modes in the prediction method, which may contribute to a deeper understanding of physical mechanisms.