(1) Background: Free space optics communication (FSO) has improved wireless communication and data transfer thanks to high bandwidth, low power consumption, energy efficiency, a high transfer capacity, and a wide applicability field. The FSO systems also have their limitations, including weather conditions and obstacles in the way of transmission. (2) Methods: This research assesses the atmospheric conditions’ influence on the intensity of received radiation, both experimentally and theoretically. The construction of a laboratory test stand of the FSO system, which is operating in the third-atmosphere transmission window (8–12 µm), is proposed. Next, considering different atmospheric conditions, the experimental validation was conducted, both in a laboratory and real conditions. (3) Results: The measurements were carried out for two optical links working with wavelengths of 1.5 µm and 10 µm. It was found that optical radiation with a wavelength of about 10 µm is characterized by better transmission properties in the case of limited visibility (e.g., light rain and fogs) than in the case of near-infrared waves. The same conclusion was found in analytical investigations. (4) Conclusions: The results obtained show that optical radiation with a wavelength of about 10 µm in limited visibility is characterized by better transmission properties than near-infrared waves. This demonstrates the validity of designing FSO links operating in the range 8–12 µm band, e.g., based on quantum cascade lasers and HgCdTe photodiodes.