As the storage organ of Chinese cabbage, the leafy head was harvested as a commercial product due to its edible value. In this study, the bulked segregant analysis (BSA) and bulked segregant RNA-Seq (BSR) were performed with F 2 separation progeny to study the molecular mechanism of leafy head formation in Chinese cabbage. BSA-Seq analysis located four candidate regions containing 40 candidate genes, while BSR-Seq analysis revealed eight candidate regions containing 607 candidate genes. The conjunctive analyses of these two methods identified that Casein kinase gene BrCKL8 (Bra035974) is the common candidate gene related with leafy head formation in Chinese cabbage, and it showed high expression levels at the three segments of heading type plant leaves. The differentially expressed genes (DEGs) between two set pairs of cDNA sequencing bulks were divided into two categories: one category was related with five hormone pathways (Auxin, Ethylene, Abscisic acid, Jasmonic acid and Gibberellin), the other category was composed of genes that associate with the calcium signaling pathway. Moreover, a series of upregulated transcriptional factors (TFs) were also identified by the association analysis of BSR-Seq analysis. The leafy head development was regulated by various biological processes and effected by diverse external environment factors, so our research will contribute to the breeding of perfect leaf-heading types of Chinese cabbage.