In this study, the use of Cr/CrN+CrCN/Cr-C:H, Cr/W-C:H, and Cr/CrN+Ag/Cr-C:H coatings deposited on copper beryllium were investigated. These protective coatings were prepared using the Magnetron Sputtering Physical Vapor Deposition (MSPVD) method. The tests were carried out in order to qualify the outer DLC (Diamond-Like Carbon) layers for use as the protective function and for regulating the thermo-optical properties. The objective of this study was to compare the properties of chromium and chromium nitride-based coatings. The microstructure, architecture, and chemical composition were studied using scanning electron microscopy (SEM), Photo Diode BackScattered Electrons (PDBS), and X-ray dispersion spectroscopy (EDX). The adhesion was evaluated using a scratch test and a peel and pull-off method. The level of protection against the cold welding effect was tested. Thermo-optical, microhardness, and surface electric resistivity tests were performed. It was found that in cases where increased resistance to cold welding is required, DLC2 and DLC3 proved to be the best solutions. An example of such an application is tubular boom antennas, which are stored in a rolled-up form until deployed in space. They are susceptible to cold welding due to vibration during rocket launch and subsequent exposure to high vacuum.