The laser powder bed fusion LPBF method in additive manufacturing for metals have proven to produce a final product with higher relative density, when compare to other metal additive manufacturing processes like WAAM, DED and it takes less time even for complex designs. Despite the use of many metal-based raw materials in the LPBF method for production of products. Maraging steel (martensitic steel) is used in aeronautical and aircraft applications in view of its advantages including low weight, high strength, long-term corrosion resistance, low cost, availability, and recyclability. A research gap concerns the selection of design, dimension, accuracy, process parameters according to different grades, and unawareness of various maraging steels other than specific maraging steels. In this comprehensive review, the research paper provides information about on LPBF maraging steel grades, their process parameters and defects, microstructure characteristics, heat treatments, and the resulting mechanical characteristics changes. In addition, detailed information about the aging properties, fatigue, residual and future scope of different maraging steel grades in LPBF for various applications are discussed.