This study focuses on the spring-back as a function of the degree of cure on single-curved metal-composite laminates. The manufacturing through a hot-pressing process involves different (curing) stages and can reduce the spring-back with the proper combination of forming and curing. The cure-dependent spring-back is measured and analysed as a function of material constituents, fibre directions, laminate layups, and the process parameters including temperature, holding time and pressure. The results demonstrate that the spring-back ratio after full-cured process is relatively small and mainly depends on the mechanical properties of the metal sheet in laminates. However, temperature and time have a significant effect on the spring-back of partially-cured laminates and the same type of fibre prepreg combined with two different metal sheets have similar trends of spring-back reduction. Moreover, the study found that the hybrid laminates with aluminium sheet delaminate at low pressure after full-cured, while the delamination disappears as the pressure increases. The characterisation on cure-dependency of the spring-back contributes to a better understanding of the deformability of the metal-composite laminates during the hot-pressing process and offers an opportunity to tune the spring-back of these laminates.