This study focuses on assessing the seismic performance of existing single-story steel buildings used as industrial buildings. This research aims to provide a systematic procedure for evaluating the seismic response of a single-story strategic building and properly accounting for the behavior of the column–base joints. Through meticulous data collection, advanced numerical modeling, and pushover analyses, this study highlights the significant impact of column–base joint behavior on the overall seismic performance of industrial buildings. The findings reveal that while single-story steel buildings show a satisfactory seismic performance in terms of lateral resistance and stiffness in the longitudinal direction, deficiencies in the joint design can strongly impact the performance in the transversal direction. This study emphasizes the necessity of incorporating joint flexibility into numerical analyses to accurately assess structural behavior. In conclusion, a precise assessment of the base joints provides insights for informing retrofitting strategies.