We investigate the electric dipole ([Formula: see text]) structure properties of the deformed [Formula: see text]Nd nuclei in the giant dipole resonance (GDR) region within the framework of the quasiparticle random-phase approximation (QRPA). Translational and Galilean invariance (TGI) QRPA with separable isovector dipole–dipole residual interaction have been employed for the calculations. We have computed the photoabsorption cross-section and then we have compared with the experimental data. Our calculations revealed that while the photoabsorption cross-section shows a Lorentzian line in the neighborhood of spherical geometry, it starts to shift to an asymmetric shape by increasing deformation in [Formula: see text]Nd isotopes by increasing neutron number. In addition to this, we have also observed that the splitting of the [Formula: see text] strength distribution and the separation between [Formula: see text] and [Formula: see text] branches are increasing. We have calculated the contribution of the electric and magnetic parts of total dipole strength up to 20[Formula: see text]MeV for the nuclei of interest. This calculation shows that the electric part dominates the total dipole strength and [Formula: see text] excitation dominates the electric part.