We present a systematic study of the micromagnetic properties of MnAs deposited by molecular-beam epitaxy on GaAs(001) and GaAs(111)B surfaces. In epitaxial MnAs films, the strain state in MnAs-onGaAs(001) (anisotropic) and MnAs-on-GaAs(111)B (isotropic) has a strong influence on the magnetostructural phase transition and thus the micromagnetic properties. The ferromagnetic α and the β phase coexist over a wide temperature range exhibiting self-organized, magnetically coupled nanostructures. Independent of the substrate orientation, magnetic flux-closure domain patterns are formed in the basal plane of MnAs. The spatial distribution of the phases in equilibrium (stripes and quasi-hexagonal islands, respectively) stabilizes various magnetic states, which were found experimentally and confirmed by micromagnetic simulations.