The introduction of carbon (C) into TiO2 may facilitate charge transfer and thus improve its photocatalytic activities. In this paper, C was introduced into N, Zr/TiO2 via ultrasound and calcination using glucose as carbon precursor. The as-prepared C@N, Zr/TiO2 was characterized by SEM, TEM, XRD, UV-Vis DRS, and XPS. The adsorption abilities of the materials were evaluated using two anion dyes [methylene blue (MB) and basic violet (BV)] and two cation dyes [titan yellow (TY) and congo red (CR)] as model pollutants. The photocatalytic activities were investigated through the degradation of Ciprofloxacin (CIP) under simulated sunlight irradiation. The results revealed that the appropriate introduction of carbon may improve the adsorption abilities and the photocatalytic activities of non-carbonaceous materials. Furthermore, several samples exhibited selective adsorption abilities for cation dyes, which suggested the potential application of the as-prepared materials for the selective removal of co-existing pollutants.