The interlaminar structure and dynamic mechanical properties of Tectona grandis fiber (TGF), polypropylene fiber (PPF), and carbon nanotube (CNT) nano composite were investigated in the current study. In order to improve the mechanical characteristics and microstructure, the present investigations used T. grandis fiber and polypropylene fiber (inorganic–organic) materials mixed with nano composite and epoxy resin. Strong bonding strength and high wear resistance were created by the silane characteristics during the coating process for the outer surface layers. Since CNT nanomaterials were directly reflected onto the outer surface, the microstructure analyses amply demonstrated that hexagonal lattice structure and crystallisation development were detected in the inner surface layer. In order to increase high stiffness and bonding strength, storage modulus and loss modulus values were applied to all composite materials, and the TGF/PPF/CNT composite materials’ hardness value was developed at 112 HV. The tensile strength of TG/PP composite was 46.7 MPa, while that of TGF/PPF/CNT composite was 57.4 MPa. Studies on wear resistance showed unequivocally that the TGF/PPF/CNT composite reduced wear and friction.