Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Estimating wave damping in carbonate rocks is complex due to their heterogeneous structure. For this reason, further research in this area is still necessary. Since the identification and evaluation of reservoir quality play an essential role in the optimal use of hydrocarbon resources, efforts are made to provide new solutions to achieve this goal by managing knowledge and accessing information from new tools such as the Vertical Seismic Profile (VSP). Seismic waves are deformed in frequency content and amplitude as they pass through the earth's layers. Part of the reduction in wavelength is related to the nature of the wave propagation and part to the geological properties, including porosity and fracture. Anisotropy and velocity model analysis, rather than the direct connection between reservoir parameters and seismic absorption coefficient, have received the majority of attention in earlier studies on the impact of reservoir parameters and fractures on changes in the quality factor. In this study, the correlation of the quality factor with parameters such as velocity deviation, fracture density, and permeability has been investigated, and an attempt has been made to define the quality factor as a tool to assess the quality of the reservoir. The statistical study using the multiple linear regression method found that fracture density is the most important parameter that follows the trend of the quality factor value. In the analysis, the quality factor showed a relatively good correlation with the permeability of the core data, so in the periods with maximum permeability, the quality factor had the lowest values. According to K-Means Clustering Analysis, 18% of the studied reservoir interval was evaluated as good quality, 33% as medium, 36% as poor, and 12% as hydrocarbon-free. This work provides insight into accessing reservoir quality using quality factor and velocity deviation logs and would be valuable for the development of reservoir quality prediction methods. Based on the study's results, it is recommended to apply this technique for modeling reservoir heterogeneity and assessing 2D and 3D seismic data to predict the reservoir quality of gas fields prior to drilling operations and reduce exploration risks.
Estimating wave damping in carbonate rocks is complex due to their heterogeneous structure. For this reason, further research in this area is still necessary. Since the identification and evaluation of reservoir quality play an essential role in the optimal use of hydrocarbon resources, efforts are made to provide new solutions to achieve this goal by managing knowledge and accessing information from new tools such as the Vertical Seismic Profile (VSP). Seismic waves are deformed in frequency content and amplitude as they pass through the earth's layers. Part of the reduction in wavelength is related to the nature of the wave propagation and part to the geological properties, including porosity and fracture. Anisotropy and velocity model analysis, rather than the direct connection between reservoir parameters and seismic absorption coefficient, have received the majority of attention in earlier studies on the impact of reservoir parameters and fractures on changes in the quality factor. In this study, the correlation of the quality factor with parameters such as velocity deviation, fracture density, and permeability has been investigated, and an attempt has been made to define the quality factor as a tool to assess the quality of the reservoir. The statistical study using the multiple linear regression method found that fracture density is the most important parameter that follows the trend of the quality factor value. In the analysis, the quality factor showed a relatively good correlation with the permeability of the core data, so in the periods with maximum permeability, the quality factor had the lowest values. According to K-Means Clustering Analysis, 18% of the studied reservoir interval was evaluated as good quality, 33% as medium, 36% as poor, and 12% as hydrocarbon-free. This work provides insight into accessing reservoir quality using quality factor and velocity deviation logs and would be valuable for the development of reservoir quality prediction methods. Based on the study's results, it is recommended to apply this technique for modeling reservoir heterogeneity and assessing 2D and 3D seismic data to predict the reservoir quality of gas fields prior to drilling operations and reduce exploration risks.
Wellbore instability causes main concerns in the oil and gas industry due to personnel safety and overall expenditure. Several signs such as wellbore spalling, the rate of penetration reduction, pipes sticking, well unnatural wash out, wellbore collapsing, induce fracture could indicate wellbore instability during drilling. A balance between stress concentration near the wellbore and rock strength is the primary condition for a wellbore stability during drilling. Thus, instability due to the failure of wellbore rocks occurs when the intensity of the effective stress exceeds rock strength. In underbalanced drilling (UBD), the wellbore is considered unstable since no pressure or maybe not enough pressure is applied on the well from the drilling fluid, and the pore pressure is considered undesirable stress on the wellbore, so the difference between these two pressures is applied on the wellbore. Consequently, the wellbore instability issue in the UBD approach is of great importance. UBD is mainly used to reduce the damage to geological formation and the risk of drilling fluid loss while increasing the drilling rate. This study has investigated the stability of a well in Iranian Oilfield using FLAC software considering yielded regions (plastic) for different mud weights. The investigation and analysis of the FLAC output plots, especially the plasticity plot, concluded that the ideal and optimal pressure for applying UBD conditions while also ensuring wellbore stability ranges 15.2–16.8 MPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.