Ti-6Al-4V is the most widely applied titanium alloy in technology and medicine due its good mechanical properties combined with low density and good corrosion resistance. However, poor technological and tribological properties make it very difficult to process, including the problems with sheet-metal forming. The best way to evaluate sheet drawability is to use Forming Limit Diagram (FLD), which represents a line at which failure occurs. FLD allows for determination of critical forming areas.The FLDs can be determined both theoretically and experimentally. Recently, special optical strain measurement systems have been used to determine FLDs.In this study, material deformation was measured with the Aramis system that allows for real-time observation of displacements of the stochastic points applied to the surface using a colour spray. The FLD was determined for Ti-6Al-4V titanium alloy sheet with thickness of 0.8 mm. In order to obtain a complete FLD, a set of 6 samples with different geometries underwent plastic deformation in stretch forming i.e. in the Erichsen cupping test until the appearance of fracture.The real-time results obtained from the ARAMIS software for multiple measurement positions from the test specimen surface were compared with numerical simulations of the cupping tests. The numerical simulations were performed using the PamStamp 2G v2012 software dedicated for analysis of sheet-metal forming processes. PamStamp 2G is based on the Finite Element method (FEM). The major and minor strains were analysed. The effect of friction conditions on strain distribution was also taken into consideration