In the waterway construction projects of the upper streams of the Yangtze River, crushed mudstone particles are widely used to backfill the foundations of the rock-socketed concrete-filled steel tube (RSCFST) pile. The mudstone particles are prone to being crushed, which influences the mechanical properties of the soil and the interface between the soil and the steel cased on the RSCFST pile. The crushing of the particles will be aggravated by reciprocating shear of the interface when the pile experiences repeating lateral loads. The reciprocating shear of the interface may, therefore, weaken the bearing capacity of the pile. In this study, we develop a new apparatus to study the mechanical properties of the steel–soil interface under a reciprocating shear condition. With this apparatus, a set of large-scale direct shear experiments are carried out with two different boundary conditions, that is, a constant stress boundary and a constant stiffness boundary, respectively. Comparative experiments and parallel experiments are carried out to study the physical properties of steel–mudstone particle interface and the stability of the apparatus. Parallel experiments show that the instrument has good stability. The comparative experiment results also reveal the differences of the shear behaviors of the interface under two conditions. Analysis of the experiment results shows that the normal stiffness condition is closer to the real boundary condition when the soil–steel interface is cyclically sheared. The particle crushing and the attenuation of normal stress is the main reason causing the degrading of the interface.