Single photon emission tomography is widely used to detect photons emitted from the patient. Some of these emitted photons suffer from scattering and absorption because of the attenuation occurred through their path in patient's body. Therefore, the attenuation is the most important problem in single-photon emission computed tomography (SPECT) imaging. Some of the radioisotopes emit gamma rays in different energy levels, and consequently, they have different counts and attenuation coefficients. Calculation of the parameters used in the attenuation equation Nout=αNin= e−
μ
l Ninby mathematical methods is useful for the attenuation correction. Nurbs-based cardiac-torso (NCAT) phantom with an adequate attenuation coefficient and activity distribution is used in this study. Simulations were done using SimSET in 20—70 and 20—167 keV. A total of 128 projections were acquired over 360°. The corrected and reference images were compared using a universal image quality index (UIQI). The simulation repeated using NCAT phantom by SimSET. In the first group, no attenuation correction was used, but the Zubal coefficients were used for attenuation correction in the second image group. After the image reconstruction, a comparison between image groups was done using optimized UIQI to determine the quality of used reconstruction methods. Similarities of images were investigated by considering the average sinogram for every block size. The results showed that the proposed method improved the image quality. This study showed that simulation studies are useful tools in the investigation of nuclear medicine researches. We produced a nonattenuated model using Monte Carlo simulation method and compared it with an attenuated model. The proposed reconstruction method improved image resolution and contrast. Regional and general similarities of images could be determined, respectively, from acquired UIQI of small and large block sizes. Resulted curves from both small and large block sizes showed a good similarity between reconstructed and ideal images.