Recent studies have increasingly focused on integrating detonation processes into engine technologies, advancing beyond the fundamental research phase of detonation research. The present study investigates the detonability and combustion characteristics of liquid fuels, specifically ethanol, with an emphasis on the effects of atomization properties facilitated by different atomizer designs to implement pulse detonation combustion engines. Oxygen was used as the oxidizer. We employed internal injectors (I45, I90, IB4) and atomizer venturis (VA, VB, VR) to examine how variations in liquid fuel atomization and atomizer configurations influence detonation. The occurrence of detonation was assessed using predicted Sauter mean diameters (SMDs) and exit velocities for different atomizer setups. Additionally, we evaluated the effects of nitrogen dilution at concentrations of 0%, 25%, and 50% on velocity variations and changes in detonation characteristics. The findings suggest that while higher exit velocities decrease SMD, facilitating detonation, excessively high velocities hinder detonation initiation. Conversely, lower exit velocities emphasize the role of SMD in initiating detonation. However, the introduction of nitrogen, which reduces the SMD, was found to decrease reactivity and impede detonation.