Long storage periods have been associated with decreased vase life. In this study, the processes underlying the vase life response to prolonged storage were investigated, along with the potential of light reflectance profiles to estimate storage duration. Three cut chrysanthemum cultivars were exposed to four cold (5 °C) storage periods (0, 7, 14, and 21 d). Stomata were present on the leaves (either side) and stem, but not on petals. As compared to the leaves, stomata on the stem were non-functional, smaller, and less dense. Floral transpiration was a small portion of the whole-cut flower transpiration, with the major contributor being the leaves or stem depending on the cut flower hydration. Storage duration linearly decreased vase life, with the rate of decrease being cultivar specific. Storage duration (0–21 d) did not affect leaf stomatal functioning, non-leaf tissue transpiration, or the relative contribution of each organ to the whole-cut flower transpiration. Cut flower hydration was generally enhanced by storage, while water uptake restoration ability was not impaired. Membrane lipid oxidation increased in response to storage duration owing to enhanced H2O2 accumulation. A strong correlation between membrane lipid oxidation level and the vase life response to cold storage was apparent. By examining the light reflectance profiles (400–1050 nm) of leaves (either side) and flowers (top view), an indication of the storage period could not be deduced. In conclusion, cultivar differences in vase life response to cold storage were attributed to variation in oxidative state, whereas cut flower water relations are clearly not involved.