A series of glasses based on (80-y) TeO2-20 BiCl3-y RE2O3 (y = 0, 0.6 mol%; RE = Nd, Sm, Dy, and Er) were prepared. The thermal stability of the glass was determined by differential scanning calorimetry (DSC). The density and optical energy values of the prepared glass increased in the order of Sm2O3, Nd2O3, Dy2O3, and Er2O3. In addition, the glass doped with Er2O3 had the highest refractive index values compared to the other samples. Subsequently, Judd–Ofelt parameters (Ω2, Ω4, and Ω6) were obtained for the family of RE3+ trivalent rare-earth ions introduced as dopants in a tellurite glass. These parameters were calculated from the absorption spectra for each RE3+. The structures were studied by Raman spectroscopy deconvolution, which determined that TeO4, TeO3, TeO3+1, BiO6, and BiCl6 units had formed. In addition, the structural changes in the glass are related to the intensity ratio of TeO4/TeO3, depending on the type of rare-earth. For the optics and Judd–Ofelt parameters, the ray spectroscopy results of the prepared glass show that it is a good candidate for nonlinear optics fibers, a solid laser material.