In order to improve the performance of surface plasmon resonance (SPR) biosensor, the structure based on two-dimensional (2D) of graphene and transition metal dichalcogenides (TMDCs) are proposed to greatly enhance the Goos-Hänchen (GH) shift. It is theoretically proved that GH shift can be significantly enhanced in SPR structure coated with gold (Au)-indium tin oxide (ITO)-TMDCs-graphene heterostructure. In order to realize high GH shifts, the number of TMDCs and graphene layer are optimized. The highest GH shift (−801.7 λ) is obtained by Au-ITO-MoSe2-graphene hybrid structure with MoSe2 monolayer and graphene bilayer, respectively. By analyzing the GH variation, the index sensitivity of such configuration can reach as high as 8.02 × 105 λ/RIU, which is 293.24 times of the Au-ITO structure and 177.43 times of the Au-ITO-graphene structure. The proposed SPR biosensor can be widely used in the precision metrology and optical sensing.