2023
DOI: 10.1016/j.cscm.2023.e02144
|View full text |Cite
|
Sign up to set email alerts
|

Investigation of temperature development and cracking control strategies of mass concrete: A field monitoring case study

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
0

Year Published

2023
2023
2025
2025

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(6 citation statements)
references
References 56 publications
0
6
0
Order By: Relevance
“…The details of the applied models are provided in the next sections. [34] thermal analysis/thermal property prediction model based on the experiments, hydration kinetics, and composite material equivalence theory Mirković U. et al [35] thermal analysis/FEM/Lusas Academic software (Available online: https://www.lusas.com (accessed on 1 March 2022))/validation Zhang J. et al [12] fully coupled hygro-thermo-mechanical model/FEM/validation Sumarno A. et al [36] thermal analysis/2D model Zhang S. et al [37] thermal fields/numerical simulation/ABAQUS 2021/validation Yu H. et al [38] thermal fields/numerical simulation/validation 2023 Mansour D. et al [13] thermal analysis/3D-finite difference model/MS Excel Van Tran M. et al [39] thermal analysis/numerical simulation/Ansys Fluent software/validation Cai Y. et al [40] thermal field/3D-FEM simulation/ABAQUS/validation Lajimi N. et al [41] hygro-thermal analysis/numerical simulation/DIGITAL Visual FORTRAN 95 Ebid A. M. et al [14] State of the art on heat and mass transfer in self-compacting concrete and geopolymer concrete Wasik M. et al [42] the prototype of the experimental stand for heat and moisture transfer investigation in building materials Zhu J. et al [43] temperature field analysis/mesoscale simulation Prskalo S. et al [44] multi-field model/finite element code PANDAS Yin H. et al [45] multi-field model/3D flow lattice model (FLM) Rossat D. et al [46] thermo-hydro-mechanical model/FE simulation/validation Lyu C. et al [47] thermo-hydro-force coupling model/FE simulation/COMSOL Multiphysics/validation Li X. et al [48] thermal analysis/FEM/Midas FEA software/validation Meghwar S. L. et al [49] moisture diffusion/FE simulation/validation 2022 Yikici A. et al [50] thermal analysis/3D numerical model/finite volume method (FVM)/MATLAB/validation Cheng P. et al [51] coupled thermo-hydro-mechanical-phase field/2D numerical simulation/Fortran/The Intel ® oneAPI Math Kernel Library PARDISO Bondareva et al [52] mathematical model of the unsteady coupled heat and mass transfer in concrete containing PCM/validation Mostafavi S.A. et al [53] thermal model/MATLAB Zhang Z. et al [54] moisture transport/2D computational fluid dynamics (CFDs) model Smolana A. et al …”
Section: General Model For Heat and Mass Transfermentioning
confidence: 99%
See 1 more Smart Citation
“…The details of the applied models are provided in the next sections. [34] thermal analysis/thermal property prediction model based on the experiments, hydration kinetics, and composite material equivalence theory Mirković U. et al [35] thermal analysis/FEM/Lusas Academic software (Available online: https://www.lusas.com (accessed on 1 March 2022))/validation Zhang J. et al [12] fully coupled hygro-thermo-mechanical model/FEM/validation Sumarno A. et al [36] thermal analysis/2D model Zhang S. et al [37] thermal fields/numerical simulation/ABAQUS 2021/validation Yu H. et al [38] thermal fields/numerical simulation/validation 2023 Mansour D. et al [13] thermal analysis/3D-finite difference model/MS Excel Van Tran M. et al [39] thermal analysis/numerical simulation/Ansys Fluent software/validation Cai Y. et al [40] thermal field/3D-FEM simulation/ABAQUS/validation Lajimi N. et al [41] hygro-thermal analysis/numerical simulation/DIGITAL Visual FORTRAN 95 Ebid A. M. et al [14] State of the art on heat and mass transfer in self-compacting concrete and geopolymer concrete Wasik M. et al [42] the prototype of the experimental stand for heat and moisture transfer investigation in building materials Zhu J. et al [43] temperature field analysis/mesoscale simulation Prskalo S. et al [44] multi-field model/finite element code PANDAS Yin H. et al [45] multi-field model/3D flow lattice model (FLM) Rossat D. et al [46] thermo-hydro-mechanical model/FE simulation/validation Lyu C. et al [47] thermo-hydro-force coupling model/FE simulation/COMSOL Multiphysics/validation Li X. et al [48] thermal analysis/FEM/Midas FEA software/validation Meghwar S. L. et al [49] moisture diffusion/FE simulation/validation 2022 Yikici A. et al [50] thermal analysis/3D numerical model/finite volume method (FVM)/MATLAB/validation Cheng P. et al [51] coupled thermo-hydro-mechanical-phase field/2D numerical simulation/Fortran/The Intel ® oneAPI Math Kernel Library PARDISO Bondareva et al [52] mathematical model of the unsteady coupled heat and mass transfer in concrete containing PCM/validation Mostafavi S.A. et al [53] thermal model/MATLAB Zhang Z. et al [54] moisture transport/2D computational fluid dynamics (CFDs) model Smolana A. et al …”
Section: General Model For Heat and Mass Transfermentioning
confidence: 99%
“…Similar to the DIANA FEA software, the determination of moisture fields is not possible with MIDAS. The state of the art shows that the application of MIDAS is usually limited to determining the temperature field in the concrete caused by the hydration heat, particularly in bridge components [48,143,144].…”
Section: Midasmentioning
confidence: 99%
“…Notably, the literature [28] presented a case study involving real-world application of these methods alongside on-site measurements, underlining the practical implications and limitations of each approach. Klemczak, Knoppik-Wróbel [30], and Li et al [31] presented case studies, the former detailing the construction of a mass concrete tunnel in Shantou City, China, and the latter discussing the behavior of tank walls and bridge abutments. Both highlighted the importance of understanding thermal-shrinkage mechanisms and showcased successful mitigation techniques, such as gradient concrete and plastic anti-crack grids.…”
Section: Introductionmentioning
confidence: 99%
“…Optimizing aggregate grading or using aggregates with higher heat storage capacity, such as basalt aggregates, can also effectively reduce concrete temperature. When controlling temperature differentials within concrete, factors such as the arrangement of cooling systems, ambient temperature, and pouring temperature need to be considered for their effects on the internal temperature field of concrete [24]. Smolana and others [25,26] discussed some analytical and numerical methods for assessing early-age cracking risks, predicting temperature field, and implementing appropriate protective measures, which contribute to the normal use and durability of concrete structures.…”
Section: Introductionmentioning
confidence: 99%