Nanocarriers have attracted a huge interest in the last decade as efficient drug delivery systems and diagnostic tools. They enable effective, targeted, controlled delivery of therapeutic molecules while lowering the side effects caused during the treatment. The physicochemical properties of nanoparticles determine their in vivo pharmacokinetics, biodistribution and tolerability. The most analyzed among these physicochemical properties are shape, size, surface charge and porosity and several techniques have been used to characterize these specific properties. These different techniques assess the particles under varying conditions, such as physical state, solvents etc. and as such probe, in addition to the particles themselves, artifacts due to sample preparation or environment during measurement. Here, we discuss the different methods to precisely evaluate these properties, including their advantages or disadvantages. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed.