Background
Digital health technologies such as continuous remote monitoring and artificial intelligence–driven clinical decision support systems could improve clinical outcomes in intensive care medicine. However, comprehensive evidence and guidelines for the successful implementation of digital health technologies into specific clinical settings such as the intensive care unit (ICU) are scarce. We evaluated the implementation of a remote patient monitoring platform and derived a framework proposal for the implementation of digital health technology in an ICU.
Objective
This study aims to investigate barriers and facilitators to the implementation of a remote patient monitoring technology and to develop a proposal for an implementation framework for digital health technology in the ICU.
Methods
This study was conducted from May 2018 to March 2020 during the implementation of a tablet computer–based remote patient monitoring system. The system was installed in the ICU of a large German university hospital as a supplementary monitoring device. Following a hybrid qualitative approach with inductive and deductive elements, we used the Consolidated Framework for Implementation Research and the Expert Recommendations for Implementing Change to analyze the transcripts of 7 semistructured interviews with clinical ICU stakeholders and descriptive questionnaire data. The results of the qualitative analysis, together with the findings from informal meetings, field observations, and previous explorations, provided the basis for the derivation of the proposed framework.
Results
This study revealed an insufficient implementation process due to lack of staff engagement and few perceived benefits from the novel solution. Further implementation barriers were the high staff presence and monitoring coverage in the ICU. The implementation framework includes strategies to be applied before and during implementation, targeting the implementation setting by involving all ICU stakeholders, assessing the intervention’s adaptability, facilitating the implementation process, and maintaining a vital feedback culture. Setting up a unit responsible for implementation, considering the guidance of an implementation advisor, and building on existing institutional capacities could improve the institutional context of implementation projects in the ICU.
Conclusions
Implementation of digital health in the ICU should involve a thorough preimplementation assessment of the ICU’s need for innovation and its readiness to change, as well as an ongoing evaluation of the implementation conditions. Involvement of all stakeholders, transparent communication, and continuous feedback in an equal atmosphere are essential, but leadership roles must be clearly defined and competently filled. Our proposed framework may guide health care providers with concrete, evidence-based, and step-by-step recommendations for implementation practice, facilitating the introduction of digital health in intensive care.
Trial Registration
ClinicalTrials.gov NCT03514173; https://clinicaltrials.gov/ct2/show/NCT03514173