In this work, the effect of the slag phase on dephosphorization in BOF (basic oxygen furnace) is explored by industrial practical experiments. The research results show that the final dephosphorization rate is related to the phase of slag rather than basicity and T.Fe content in slag. The correlation between the dephosphorization ability of slag and the proportion of liquid phase (phase B) and phosphorus-containing solid solution phase (phase A) in the slag is much higher than that of RO (MgO•FeO, MnO•FeO) phase (phase C). The phosphorous partition fitting by using the minimum second-order multiplication proposed in this work is compared with the equations suggested by Healy and Ogawa. The comparison result shows that the dephosphorization ability of slag can be well predicted by analyzing the proportion of liquid phase and phosphorus-containing solid solution phase in slag, and the mechanism of the influence of the slag phase on dephosphorization is discussed.