With regard to the current economic situation, which deals primarily with energy prices, companies are trying to find reserves within individual technologies. The automotive industry is still a very important industry. One of the ways to improve the material properties of a body part is thermomechanical processing. This is how the B-pillar, which serves as a safety structural element of the car, was processed. The presented article aims to investigate the influence of selected thermomechanical processing parameters on the resulting properties of a B-pillar made of high-strength steel 22MnB5. At the same time, energy saving in the given production process should be used in such a way that it is not at the expense of the quality of the component. Three kinds of experimental production processes with different parameters of thermomechanical processing of steel were proposed for scientific investigation. Based on these proposed processes, several pieces of B-pillars were produced and subjected to further investigation. Changes in material properties were monitored using hardness measurements and subsequently the resulting microstructure of the material was examined for each experimental post.