ObjectivesAdvancements in artificial intelligence (AI)‐driven predictive modeling in dentistry are outpacing the clinical translation of research findings. Predictive modeling uses statistical methods to anticipate norms related to TMJ dynamics, complementing imaging modalities like cone beam computed tomography (CBCT) and magnetic resonance imaging (MRI). Deep learning, a subset of AI, helps quantify and analyze complex hierarchical relationships in occlusion and TMJ function. This narrative review explores the application of predictive modeling and deep learning to identify clinical trends and associations related to occlusion and TMJ function.ResultsDebates persist regarding best practices for managing occlusal factors in temporomandibular joint (TMJ) function analysis while interpreting and quantifying findings related to the TMJ and occlusion and mitigating biases remain challenging. Data generated from noninvasive chairside tools such as jaw trackers, video tracking, and 3D scanners with virtual articulators offer unique insights by predicting variations in dynamic jaw movement, TMJ, and occlusion. The predictions help us understand the highly individualized norms surrounding TMJ function that are often required to address temporomandibular disorders (TMDs) in general practice.ConclusionsNormal TMJ function, occlusion, and the appropriate management of TMDs are complex and continue to attract ongoing debate. This review examines how predictive modeling and artificial intelligence aid in understanding occlusion and TMJ function and provides insights into complex dental conditions such as TMDs that may improve diagnosis and treatment outcomes with noninvasive techniques.