2018
DOI: 10.1155/2018/7169482
|View full text |Cite
|
Sign up to set email alerts
|

Investigation of the Spatial Clustering Properties of Seismic Time Series: A Comparative Study from Shallow to Intermediate‐Depth Earthquakes

Abstract: In this paper, a size-independent modification of the general detrended fluctuation analysis (DFA) method is introduced. With this modified DFA, seismic time series (m≥4.5) pertaining to most seismically active regions of the world from the year 1972 up to the year 2016 are comparatively analyzed. An eminent homogeneity of spatial clustering behaviors in worldwide range is detected and DFA scaling exponents coincide with previous results for local regions. Furthermore, universal nontrivial spatial clustering b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2020
2020
2022
2022

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 72 publications
(96 reference statements)
0
1
0
1
Order By: Relevance
“…Here, the objects of inquiry can be time or spatial series formed during experimental observations or theoretical calculations. This approach is applied in areas such as astronomy (sun spots) [ 4 ], seismology (Earth crust vibrations) [ 5 ], physiology (electroencephalograms) [ 6 ], meteorology (weather observation data) [ 7 ], econophysics (stock quotation) [ 8 ], bioinformatics (protein dynamics) [ 9 ], and chemistry (concentration changes) [ 10 ]. The following two basic problems are solved here: the classification of series and the prediction of their behavior.…”
Section: Introductionmentioning
confidence: 99%
“…Here, the objects of inquiry can be time or spatial series formed during experimental observations or theoretical calculations. This approach is applied in areas such as astronomy (sun spots) [ 4 ], seismology (Earth crust vibrations) [ 5 ], physiology (electroencephalograms) [ 6 ], meteorology (weather observation data) [ 7 ], econophysics (stock quotation) [ 8 ], bioinformatics (protein dynamics) [ 9 ], and chemistry (concentration changes) [ 10 ]. The following two basic problems are solved here: the classification of series and the prediction of their behavior.…”
Section: Introductionmentioning
confidence: 99%
“…κατανάλωση ενέργειας. Χαρακτηριστικό παράδειγμα η έρευνα στην εργασία [35] σχετικά με την μόλυνση του εδάφους, καθώς και οι εργασίες σχετικά με την ανίχνευση και κατηγοριοποίηση σεισμών [36], [37]. Ένα επίσης από τα σημαντικότερα επιτεύγματα της Μηχανικής Μάθησης στο πεδίο των Γεωεπιστημών είναι η ελάφρυνση της επέμβασης του ανθρώπινου παράγοντα, απαιτώντας έως και 100 φορές μικρότερη πληροφορία κατά την σύνθεση των δεδομένων, επιτρέποντας στους ειδικούς να αφιερώσουν περισσότερο χρόνο σε ποιοτικότερες αναλύσεις.…”
Section: εφαρμογές μηχανικής μάθησηςunclassified