The route to turbulence in the boundary layer on a rotating broad cone is investigated using hot-wire anemometry measuring the azimuthal velocity. The stationary fundamental mode is triggered by 24 deterministic small roughness elements distributed evenly at a specific distance from the cone apex. The stationary vortices, having a wave number of 24, correspond to the fundamental mode and these are initially the dominant disturbanceenergy carrying structures. This mode is found to saturate and is followed by rapid growth of the nonstationary primary mode as well as the stationary and nonstationary first harmonics, leading to transition to turbulence. The amplitudes of these are plotted in a way to highlight the continued growth after saturation of the fundamental stationary mode.