Using non-equilibrium molecular dynamics method, we investigate thermal rectification (TR) in hybrid pristine carbon nanotube (PCNT) and hydrogenated carbon nanotube (HCNT) structures. The interface thermal resistance of the junction is dependent on the direction of thermal transport, leading to TR. We show that by selecting nanotubes of smaller diameters, and/or increasing the hydrogen coverage of HCNT, the TR can be amplified. The observed TR does not decrease by increasing the system length, which presents PCNT/HCNT system as a promising thermal rectifier at room temperature.