Abstract:In this paper, we propose an approach to quantitatively analyze impacts of different training label errors to RNN-T based ASR models. The result shows deletion errors are more harmful than substitution and insertion label errors in RNN-T training data. We also examined label error impact mitigation approaches on RNN-T and found that, though all the methods mitigate the label-error-caused degradation to some extent, they could not remove the performance gap between the models trained with and without the presen… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.