The development and
application of trimetallic nanoparticles continues
to accelerate rapidly as a result of advances in materials design,
synthetic control, and reaction characterization. Following the technological
successes of multicomponent materials in automotive exhausts and photovoltaics,
synergistic effects are now accessible through the careful preparation
of multielement particles, presenting exciting opportunities in the
field of catalysis. In this review, we explore the methods currently
used in the design, synthesis, analysis, and application of trimetallic
nanoparticles across both the experimental and computational realms
and provide a critical perspective on the emergent field of trimetallic
nanocatalysts. Trimetallic nanoparticles are typically supported on
high-surface-area metal oxides for catalytic applications, synthesized
via
preparative conditions that are comparable to those
applied for mono- and bimetallic nanoparticles. However, controlled
elemental segregation and subsequent characterization remain challenging
because of the heterogeneous nature of the systems. The multielement
composition exhibits beneficial synergy for important oxidation, dehydrogenation,
and hydrogenation reactions; in some cases, this is realized through
higher selectivity, while activity improvements are also observed.
However, challenges related to identifying and harnessing influential
characteristics for maximum productivity remain. Computation provides
support for the experimental endeavors, for example in electrocatalysis,
and a clear need is identified for the marriage of simulation, with
respect to both combinatorial element screening and optimal reaction
design, to experiment in order to maximize productivity from this
nascent field. Clear challenges remain with respect to identifying,
making, and applying trimetallic catalysts efficiently, but the foundations
are now visible, and the outlook is strong for this exciting chemical
field.